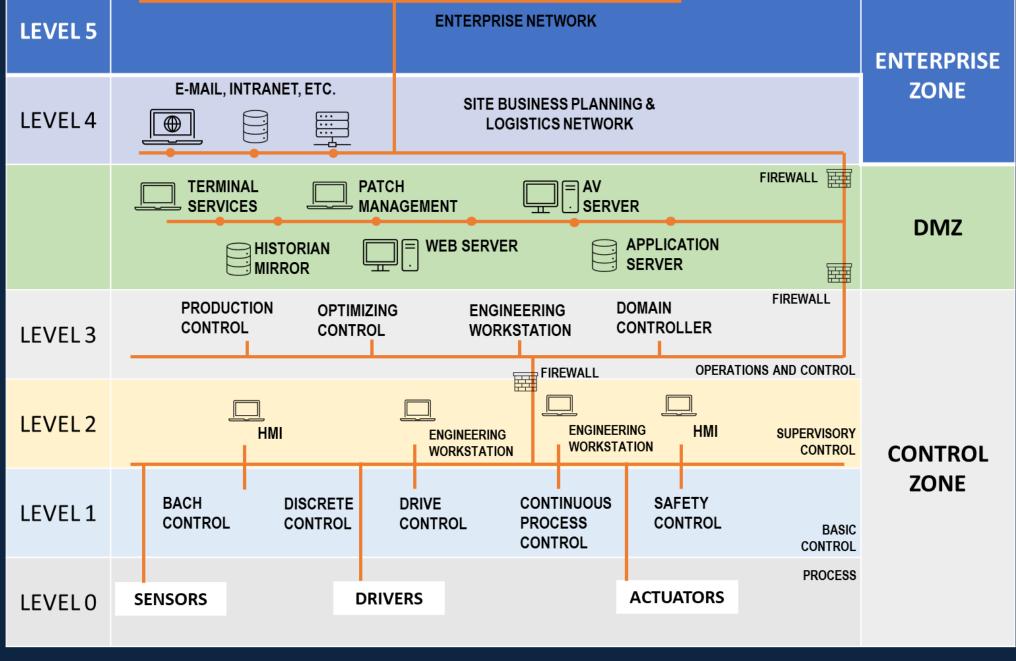
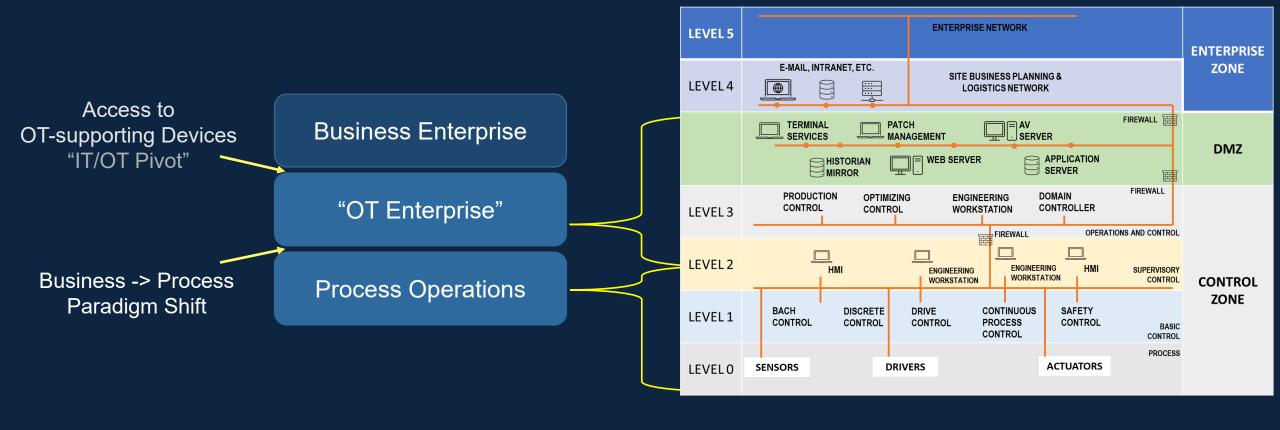
Applying Detection Engineering Methods to ICS

IoB Working Group

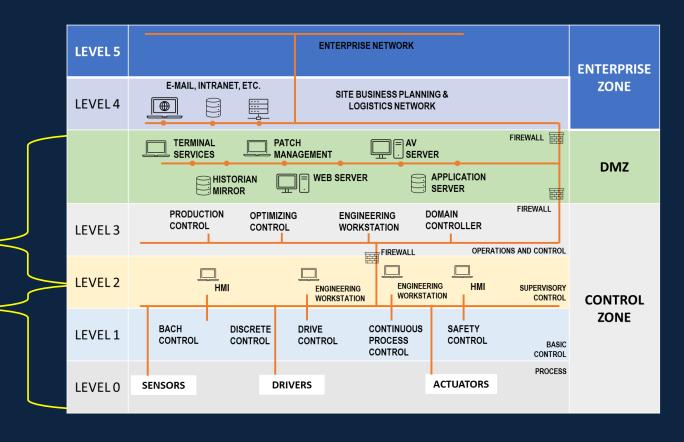

14 June 2022 Michael McFail



Introduction

- ICS environments and analytic strategy
- Challenges in ICS detection engineering
- Overcoming those obstacles
 - Measuring detection coverage with capability abstractions
 - Use of a detection engineering / threat hunting methodology
 - Effective ICS purple teaming
- Wrap-up

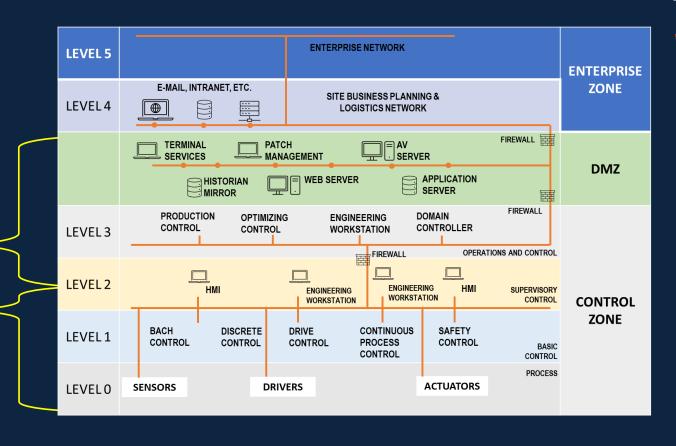
Purdue Reference Architecture



Business Enterprise

"OT Enterprise"

Process Operations

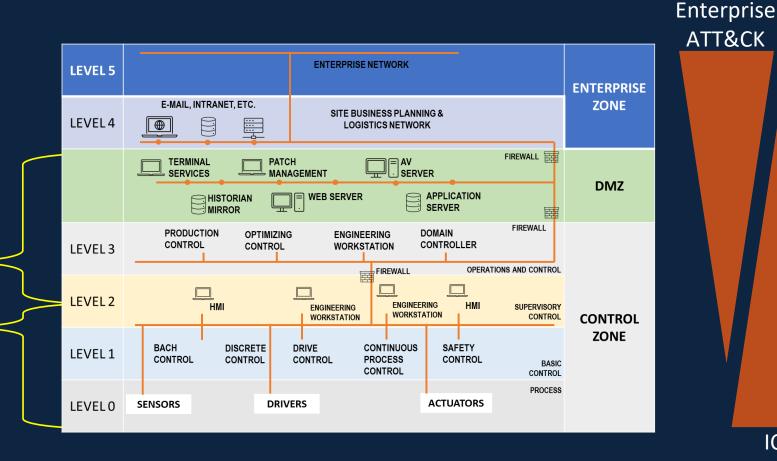


Defenders Should Start Here

Business Enterprise

"OT Enterprise"

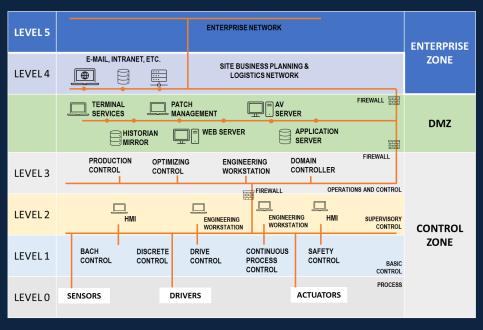
Process Operations

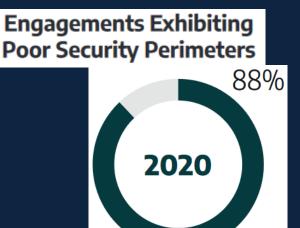


Business Enterprise

"OT Enterprise"

Process Operations


Our Focus


ICS is less like this...

and more like this...

Organizations that Lacked Separate IT and OT User Management

54% 2020

The Real World is Large and Messy

- ICS environments are small and static *in some limited cases*
 - Your small-town wastewater treatment plant
 - A single electric substation
 - Certain DoD use cases, e.g, some weapons systems
- The same thing holds in IT
 - The Scranton branch of Dunder Mifflin is small and static

The Real World is Large and Messy

- Small and static is not the environment we need to worry about
 - Duke Energy handles electric generation, transmission and distribution
 - They have 7.4 million customers across 100k square miles
 - 250k miles of distribution lines
 - They do generation with nuclear, coal, hydro, solar, wind, oil and gas
 - Across ~98 facilities
 - The same scale (or larger!) applies to ICS across gov and private industry
- That's the level of scale and complexity we need to tackle in the ICS space
- This difference in scale becomes a difference in kind

Source: https://en.wikipedia.org/wiki/Duke_Energy

ICS Detection Engineering Challenges

- ICS is incredibly diverse
 - Hardware, software, protocols, and configurations, oh my!
- Domain knowledge is fragmented and difficult to generalize
- Use of legacy hardware, software and protocols
- ICS community is catching up to the importance of cyber security
- Difficulties with data collection

ICS Detection Engineering Challenges

- Extrapolating from a small number of incidents
 - Even within those, we have gaps in finished intelligence
- ATT&CK maps high confidence behaviors
 - Appropriate for a public knowledge base
 - Lower confidence intel assessments may still be a good starting place for detection engineering
- Generalizing procedures from intel to TTPs/behaviors is challenging
 - Need context on the environment you're defending
 - Adversary emulation is especially valuable

ICS Data Sources

Host

Enterprise Sources

ICS Device/ Application Logs Network

Enterprise Protocols

ICS Protocols

Operational Sources

Alarms

Operational Process Data

Asset Management

Work Order Tracking

"Simplified Schema" for Documentation

Protocol

Protocol is the top-level differentiator used in defining requirements

While some vendor implementations will deviate from spec, largely we can find great re-use in building protocol features

e.g. BACnet, OPC-DA

Function

For each protocol, exposing the functions they support creates an explicit definition of protocol capabilities

Modbus → Function Code

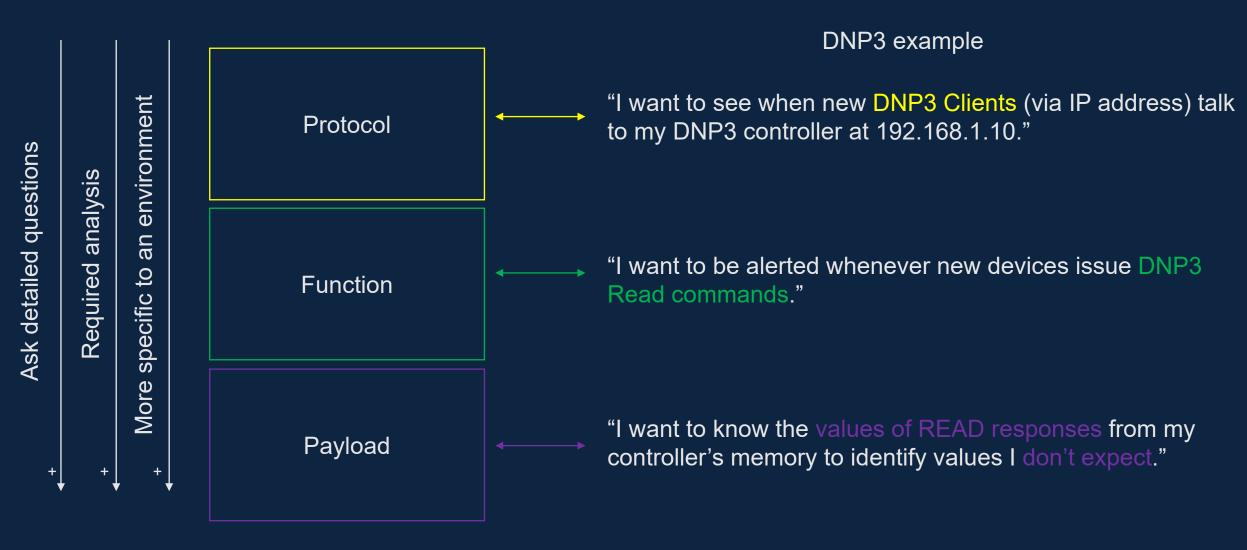
BACnet → Service

S7 → Command

OPC-DA → Method

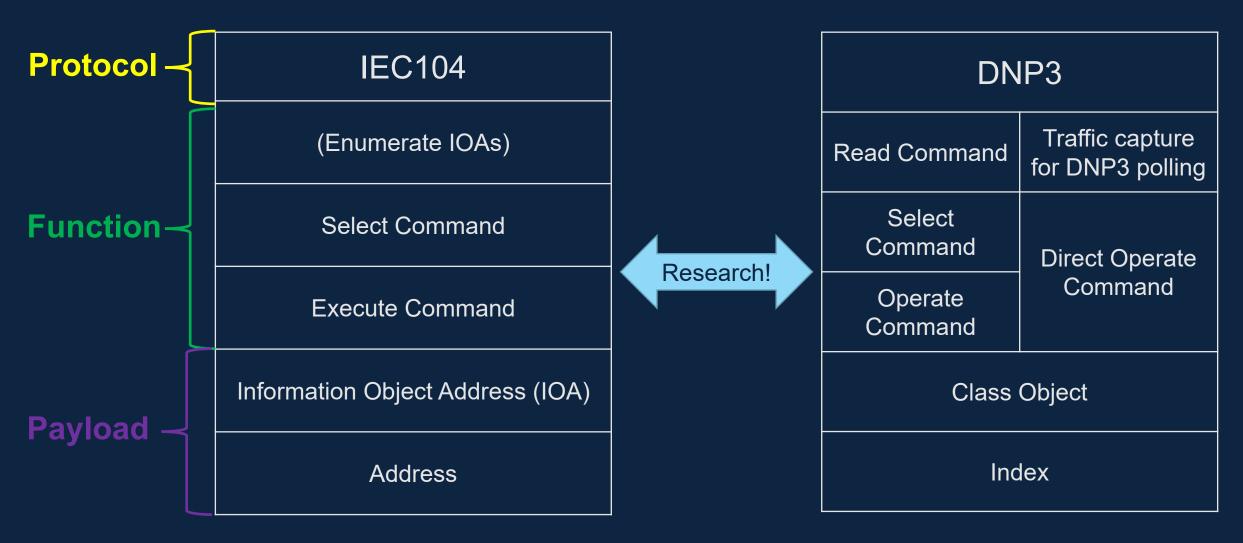
Payload

The payload contains the required contents needed to exact the effect intended for the given (protocol, function)


The payload defines a required interface to populate data against.

BACnet ReadProperty →

(device, obj-type, obj-inst, property, [index])



ICS Network Analytic Schema

Translating Data Requirements Across Protocols

OT Enterprise: Creating a New Windows Service

Create or Modify System Process: Windows Service (T1543.003)						
Procedure	Direct Service Creation			Sideloading via Registry Key		
Tool	sc.exe	sc.exe psexec.exe wimic.exe				
Windows API	CreateServiceA	RCreateServiceW	Win32_Service::Create			
RPC	SMB named pipe \PIPE\svcctl	SVCCTL	DCOM			
			000001a0-0000-0000- c000-000000000046			
	Service Cor					
Artifacts	New/modified registry s	subkey under HKLM	\SYSTEM\CurrentControlS	Set\Services		

SpecterOps Capability Abstraction concept

- https://posts.specterops.io/capability-abstraction-fbeaeeb26384
- https://abstractionmaps.com/maps/t1050/

OT Enterprise: Creating a New Windows Service

Create or Modify System Process: Windows Service (T1543.003)						
Procedure	Sandworm Dire (Ukraine 2016)	Sideloading via Registry Key				
Tool	sc.exe	psexec.exe	wimic.exe	reg.exe		
Windows API	CreateServiceA	RCreateServiceW	Win32_Service::Create			
RPC	SMB named pipe \PIPE\svcctl	SVCCTL	DCOM			
	UUID 367ABB81–9844 98F0380010		000001a0-0000-0000- c000-000000000046			
	Service Control Manager (services.exe)					
Artifacts	New/modified registry subkey under HKLM\SYSTEM\CurrentControlSet\Services					

Event Log 4688 Sysmon 1

MITRE

Event Log 4697 Event Log 7045 Sysmon 12

RPC Network Traffic

SMB Network Traffic

An anecdote on protocol capabilities - BACnet

- bacpypes and sourceforce BACnet project's implementation
 - AtomicWriteFile operations take a filename as the required parameter
 - Taking this, we could hypothesize use of bytes transferred is a good metadata source for detection
 - A 12KB file transfer in short time would help identify any write file

```
170 :
172 20 32 200
                47808
                        172 20 32 105
                                         47808
                                                          19.200213
                                                 udp -
                        172.20.32.116
172 20 32 200
                47808
                                         47808
                                                 udp -
                                                          0.684077
                                                                      85
                                                          301.736106
                                                                      1700
172 20 32 200
                47808
                        172 20 32 57
                                         47808
                                                 udp -
                                                                                      Bytes transfered
172 20 32 200
                47808
                        172 20 32 55
                                         47808
                                                 udp –
                                                          304.756060
                                                                      1700
172 20 32 200
                47808
                        172 20 32 53
                                         47808
                                                 - abu
                                                          301.611212
                                                                      1700
172 20 32 200
                        172 20 32 50
                47808
                                         47808
                                                 udp -
                                                          307.124768
                                                                      1700
172 20 32 200
                47808
                        172 20 32 56
                                         47808
                                                 udp -
                                                          305.666934
                                                                      1700
172 20 32 200
                47808
                        172 20 32 52
                                         47808
                                                 - abu
                                                          303.296444
                                                                      1700
```

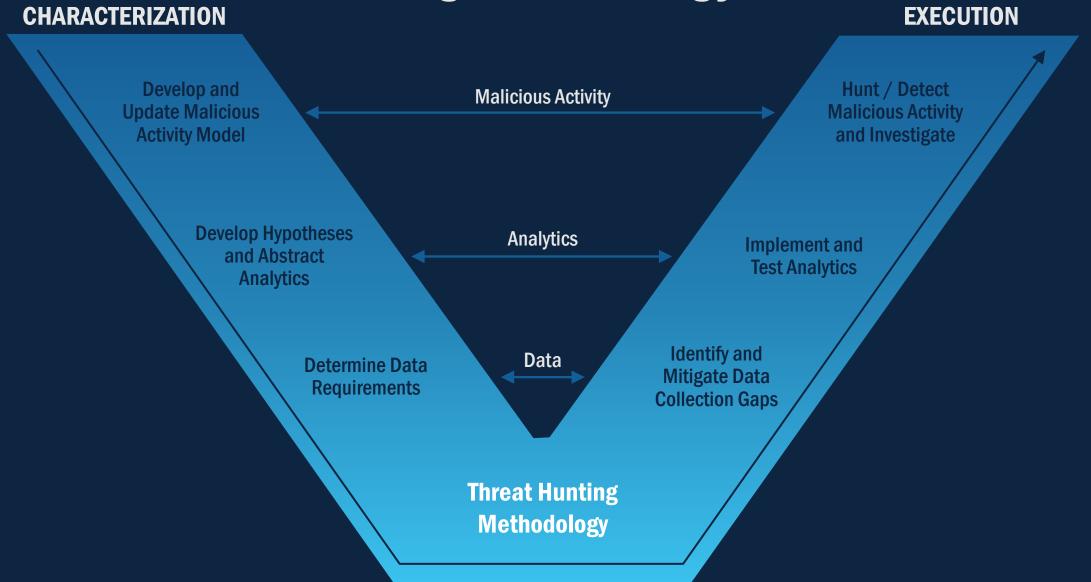
An anecdote on protocol capabilities - BACnet

But...

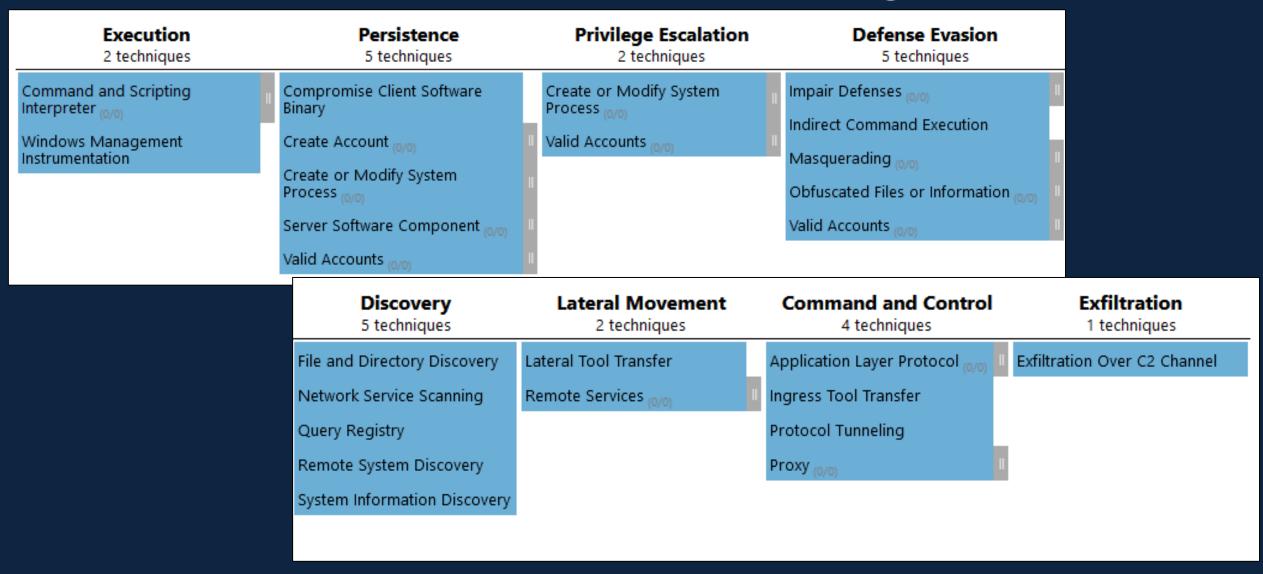
The implementation <u>differs</u> from the specification

Table 14-2. Structure of AtomicWriteFile Service Primitives						
Parameter Name	Req	Ind	Rsp			
Argument	M	M(=)				
File Identifier	M	M(=)				
Stream Access	S	S(=)				
File Start Position	M	M(=)				
File Data	M	M(=)				

- Byte transfer is an insufficient data source for identifying file writes by itself
- This affects how we can develop and emulate adversary capabilities
- This affects our technical goals and detection development


We cannot trust reference implementations blindly

BACNet File Write Capability Abstraction


- We must seek to better understand system capabilities > implementations
 - Capability abstraction to the rescue!

BACNet					
Program Download / Modify Program / Modify Controller Tasking / System Firmware / Module Firmware / Modify Parameter					
Behavior		Use BACNet to write a file			
Function		Atomic	File Write		
Devilored	Stream Access		Record	Access	
Payload	Write Entire File	Write File Chunk at Offset	Write Entire File	Write Records at Index	

TCHAMP Threat Hunting Methodology

Ukraine 2016 Enterprise ATT&CK Mapping

Ukraine 2016 ICS ATT&CK Mapping

Initial Access 1 techniques	Execution 1 techniques	Persistence 1 techniques	Evasion 1 techniques	Discovery 3 techniques
Data Historian Compromise	Command-Line Interface	Valid Accounts	Masquerading	Network Connection Enumeration
				Remote System Discovery
				Remote System Information Discovery

Lateral Movement 2 techniques	Collection 3 techniques	Command and Control 3 techniques	Inhibit Response Function 8 techniques	Impair Process Control 2 techniques	Impact 6 techniques
Lateral Tool Transfer	Automated Collection	Commonly Used Port	Activate Firmware Update	Brute Force I/O	Damage to Property
Remote Services	Monitor Process State	Connection Proxy	Mode Block Command Message	Unauthorized Command	Loss of Control
	Point & Tag Identification	Standard Application Layer Protocol	Block Command Message	Message	Loss of Protection
		Layer Protocor	Block Serial COM		Loss of View
			Data Destruction		Manipulation of Control
			Denial of Service		Manipulation of View
			Device Restart/Shutdown		
			Service Stop		

IT Protocol

SCADA Specific

Env Specific

OT Protocol

Ukraine 2016 - Analytics for Electric Distribution

Developing Abstract Attacks and Analytic Hypotheses

- Creating broadly applicable abstract attacks and detections
- List out assumptions and walk-through attack and detection implications
- This has been a good exercise in dealing with environmental diversity
- OT enterprise (Windows) systems are in scope
 - Many analytics will be widely reusable across environments
 - Review of open-source analytics (CAR, Sigma, Elastic)

Purple Teaming for Robust Detection Coverage

ATT&CK Mapping	Adversary Procedure	AE Behavior	High Level Analytic Idea	Data Requirements
	The IEC104 module had the		Function Code Anomaly Detection (volume, periodicity, etc)	DNP3 function code
ICS Matrix Collection Point and Tag Identification	ability to use Select and Execute to switch state and confirm whether the IOA belongs to the single command type	Actively inserting DNP3 integrity polling (reads for class 0,1,2,3) from existing Master	Payload Anomaly Detection (FC anomaly detection with extra features)	DNP3 function code and payload

Purple Teaming for Robust Detection Coverage

Adversary Procedure	AE Behavior	High Level Analytic Idea	Data Requirements	Abstract Analytics	Detailed Data Requirements
I EVACINA IO I	Actively inserting DNP3 integrity polling		DNP3 function code	High volume of reads	Read command statistics
				Change in read periodicity	Individual read commands
	from existing Master	Payload	DNP3 function code	Read for a new data group	Group and Variation fields
	Master	Anomaly Detection	and payload	Read for a new class of data	Group and Variation fields

Purple Teaming for Robust Detection Coverage

Abstract Analytic	Detailed Data Requirements	Detailed Analytics	
High volume of reads		Reads from a new device	
	DNP3 function code read command statistics	Number of reads for a single device above threshold	
		Number of reads for a single device below threshold	
		Number of reads across multiple devices above threshold	
		Number of reads across multiple devices below threshold	

OT Protocol Analytic Example: Excessive Reads

- Analytic: Excessive Read commands (asset enumeration)
 - Determine if Read commands between two assets exceeds baseline threshold
- ICS ATT&CK: Collection: Point and Tag Identification
 - Tied to technique and procedure not just blindly throwing ML at the problem
- Lots of ways to implement: Elastic/Splunk ML, vendors may have detections
 - Provides requirements we can use to evaluate solutions
- Data requirements:
 - DNP3 function code parsing
 - What was being read? Need parsing to down to payload level to enable triage

OT Protocol Analytic Example: Analyst Context

- Situational awareness context (dashboards)
 - What is the normal rate of Read commands?
 - Which Objects are being read? Is that within the baseline?
 - Are any of them indicative of Collection?
 - Group 0 Variation 250: product name and model; Variation 255: list all attributes; etc.
 - What user was logged into the Master?
- Other analytics (potentially lower severity) pull the thread on the Tactics lifecycle
 - What asset normally talks to the outstation? Is this a Rogue Master?
 - Any indication of Discovery for the outstation? E.g., scanning, who-is queries (not DNP3)
 - Noisier analytics related to Persistence? New processes/services on the Master?
 - Noisier analytics related to Lat Movement/C2? Remote interactive sessions to Master?

Conclusion

- Detection engineering needs to draw on
 - Intelligence reports and models of adversary behavior
 - Adversary emulation
 - Domain knowledge on systems, architecture, protocols, environment
- Need people in both red and blue hats to enable purple teaming
- Provide analyst context beyond 'simply' making analytics fire
- Detection eng. requirements inform collection and retention strategies
 - Don't pull a parser off the shelf and start writing analytics based on it

Backup

OT Protocol Data Requirements

Determine Data Requirements

- Decompose TTPs to the protocol, function and payload level
- In the attack the Industroyer IEC104 module could use Select and Execute to
 - Enumerate Information Object Address (IOAs) [Point and Tag Identification]
 - Rapidly flip state on the IOA range of interest [Brute Force I/O]
- In the target environment DNP3 can be used to
 - Issue a Read command to enumerate Class 0,1,2,3 Objects
 - Issue Select with an index and operation type to reserve the resource
 - Issue an Operate command with the index and operation type to tell the device to performs the requested operation
- This provides a framework for defining analytic requirements
 - Data sources, parsing, sensor visibility, analytic logic operators, etc.

Default Zeek Parser

```
"ts": 1583869914.742999,
"uid": "COBIWOlui3Pwb5v1E5",
"id.orig_h": "10.10.20.5",
"id.orig_p": 20000,
"id.resp_h": "10.10.20.8",
"id.resp_p": 20000,
"fc_request": "READ",
"fc_reply": "RESPONSE",
"iin": 0
```

	Time	Source	Destination	Protocol	Length	
3	1583869914.742999	10.10.20.8	10.10.20.5	DNP 3.0		122

```
[Reassembled DNP length: 298]
Application Layer: (FIR, FIN, Sequence 3, Response)
> Application Control: 0xc3, First, Final(FIR, FIN, Sequence 3)
  Function Code: Response (0x81)
Internal Indications: 0x0000
RESPONSE Data Objects
   > Object(s): Binary Input With Status (Obj:01, Var:02) (0x0102), 120 points
   > Object(s): Binary Output Status (Obj:10, Var:02) (0x0a02), 34 points
  Object(s): 16-Bit Analog Input (Obj:30, Var:02) (0x1e02), 20 points
      > Oualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
     > Point Number 0 (Quality: Offline), Value: 960
     > Point Number 1 (Quality: Offline), Value: 1247
     > Point Number 2 (Quality: Offline), Value: 1235
     > Point Number 3 (Quality: Offline), Value: 1255
     > Point Number 4 (Quality: Offline), Value: 880
     > Point Number 5 (Quality: Offline), Value: 1350
     > Point Number 6 (Quality: Offline), Value: 870
     > Point Number 7 (Quality: Offline), Value: 0
      > Point Number 8 (Quality: Offline), Value: 0
     > Point Number 9 (Quality: Offline), Value: 0
     > Point Number 10 (Quality: Offline), Value: 0
     > Point Number 11 (Quality: Offline), Value: 0
     > Point Number 12 (Quality: Offline), Value: 0
     > Point Number 13 (Quality: Offline), Value: 0
     > Point Number 14 (Quality: Offline), Value: 0
     > Point Number 15 (Quality: Offline), Value: 0
     > Point Number 16 (Quality: Offline), Value: 0
     > Point Number 17 (Quality: Offline), Value: 0
     > Point Number 18 (Quality: Offline), Value: 0
     > Point Number 19 (Quality: Offline), Value: 0
  > Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
     > [Number of Items: 20]
     > Point Number 0 (Quality: Offline), Value: 0
        Point Number 1 (Quality: Offline), Value: 0
```

```
"ts": 1583869914.739725.
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "READ",
    "object type": "Class 0 Data"
} {
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Input",
    "object count": 20,
    "range low": 0,
    "range high": 19
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Output Status",
    "object count": 20,
    "range low": 0,
    "range high": 19
```

D				
	2	Pa		

```
        Time
        Source
        Destination
        Protocol
        Length

        3 1583869914.742999
        10.10.20.8
        10.10.20.5
        DNP 3.0
        122
```

```
[Reassembled DNP length: 298]
Application Layer: (FIR, FIN, Sequence 3, Response)
  Application Control: 0xc3, First, Final(FIR, FIN, Sequence 3)
  Function Code: Response (0x81)
Internal Indications: 0x0000
RESPONSE Data Objects
   > Object(s): Binary Input With Status (Obj:01, Var:02) (0x0102), 120 points
     Object(s): Binary Output Status (Obj:10, Var:02) (0x0a02), 34 points
   Object(s): 16-Bit Analog Input (Obj:30, Var:02) (0x1e02), 20 points
      > Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 960
      > Point Number 1 (Quality: Offline), Value: 1247
      > Point Number 2 (Quality: Offline), Value: 1235
      > Point Number 3 (Quality: Offline), Value: 1255
      > Point Number 4 (Quality: Offline), Value: 880
      > Point Number 5 (Quality: Offline), Value: 1350
      > Point Number 6 (Quality: Offline), Value: 870
      > Point Number 7 (Quality: Offline), Value: 0
      > Point Number 8 (Quality: Offline), Value: 0
      > Point Number 9 (Quality: Offline), Value: 0
      > Point Number 10 (Quality: Offline), Value: 0
      > Point Number 11 (Quality: Offline), Value: 0
      > Point Number 12 (Quality: Offline), Value: 0
      > Point Number 13 (Quality: Offline), Value: 0
      > Point Number 14 (Quality: Offline), Value: 0
      > Point Number 15 (Quality: Offline), Value: 0
      > Point Number 16 (Quality: Offline), Value: 0
      > Point Number 17 (Quality: Offline), Value: 0
      > Point Number 18 (Quality: Offline), Value: 0
      > Point Number 19 (Quality: Offline), Value: 0

▼ Object(s): 16-Bit Analog Output Status (Obj:40, Var:02) (0x2802), 20 points

      > Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 0
        Point Number 1 (Quality: Offline), Value: 0
```

```
"ts": 1583869914.739725.
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "READ",
    "object type": "Class 0 Data"
} {
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Input",
    "object count": 20,
    "range low": 0,
    "range high": 19
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Output Status",
    "object count": 20,
    "range low": 0,
    "range high": 19
```

	Time	Source	Destination	Protocol	Length
3	1583869914.742999	10.10.20.8	10.10.20.5	DNP 3.0	122

```
[Reassembled DNP length: 298]
Application Layer: (FIR, FIN, Sequence 3, Response)
> Application Control: 0xc3, First, Final(FIR, FIN, Sequence 3)
  Function Code: Response (0x81)
Internal Indications: 0x0000
RESPONSE Data Objects
   > Object(s): Binary Input With Status (Obj:01, Var:02) (0x0102), 120 points
     Object(s): Binary Output Status (Obj:10, Var:02) (0x0a02), 34 points
   Object(s): 16-Bit Analog Input (Obj:30, Var:02) (0x1e02), 20 points
      > Qualifier Field, Prefix: None, Range: 8-bit_Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 960
      > Point Number 1 (Quality: Offline), Value: 1247
      > Point Number 2 (Quality: Offline), Value: 1235
      > Point Number 3 (Quality: Offline), Value: 1255
      > Point Number 4 (Quality: Offline), Value: 880
      > Point Number 5 (Quality: Offline), Value: 1350
      > Point Number 6 (Quality: Offline), Value: 870
      > Point Number 7 (Quality: Offline), Value: 0
      > Point Number 8 (Quality: Offline), Value: 0
      > Point Number 9 (Quality: Offline), Value: 0
      > Point Number 10 (Quality: Offline), Value: 0
      > Point Number 11 (Quality: Offline), Value: 0
      > Point Number 12 (Quality: Offline), Value: 0
      > Point Number 13 (Quality: Offline), Value: 0
     > Point Number 14 (Quality: Offline), Value: 0
      > Point Number 15 (Quality: Offline), Value: 0
      > Point Number 16 (Quality: Offline), Value: 0
      > Point Number 17 (Quality: Offline), Value: 0
      > Point Number 18 (Quality: Offline), Value: 0
      > Point Number 19 (Quality: Offline), Value: 0

✓ Object(s): 16-Bit Analog Output Status (Obj:40, Var:02) (0x2802), 20 points
      > Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 0
        Point Number 1 (Quality: Offline), Value: 0
```

```
"ts": 1583869914.739725,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "READ",
    "object type": "Class 0 Data"
} {
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Input",
    "object count": 20,
    "range low": 0,
    "range high": 19
    "ts": 1583869914.742999,
    "uid": "COBIWOlui3Pwb5vlE5",
    "id.orig h": "10.10.20.5",
    "id.orig p": 20000,
    "id.resp h": "10.10.20.8",
    "id.resp p": 20000,
    "function code": "RESPONSE",
    "object type": "16-Bit Analog Output Status",
    "object count": 20,
    "range low": 0,
    "range high": 19
```

20	

	Time	Source	Destination	Protocol	Length
3	1583869914.742999	10.10.20.8	10.10.20.5	DNP 3.0	122

```
[Reassembled DNP length: 298]
Application Layer: (FIR, FIN, Sequence 3, Response)
> Application Control: 0xc3, First, Final(FIR, FIN, Sequence 3)
  Function Code: Pesponse (0x81)
  Internal Indications: 0x0000
    Object(s): Binary Input With Status (Obj:01, Var:02) (0x0102), 120 points
    Object(s): Binary Output Status (Obj:10, Var:02) (0x0a02), 34 points
   Object(s): 16-Bit Analog Input (Obj:30, Var:02) (0x1e02), 20 points
      > Qualifier Field, Prefixe Home, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 960
      > Point Number 1 (Quality: Offline), Value: 1247
       Point Number 2 (Quality: Offline), Value: 1235
      > Point Number 3 (Quality: Offline), Value: 1255
      > Point Number 4 (Quality: Offline), Value: 880
       Point Number 5 (Quality: Offline), Value 1350
      > Point Number 6 (Quality: Offline), Value: 870
      > Point Number 7 (Quality: Offline), Value: 0
      > Point Number 8 (Quality: Offline), Value: 0
      > Point Number 9 (Quality: Offline), Value: 0
      > Point Number 10 (Quality: Offline), Value: 0
      > Point Number 11 (Quality: Offline), Value 0
      > Point Number 12 (Quality: Offline), Value 0
      > Point Number 13 (Quality: Offline), Value: 0
     > Point Number 14 (Quality: Offline), Value: 0
      > Point Number 15 (Quality: Offline), Value: 0
      > Point Number 16 (Quality: Offline), Value: 0
      > Point Number 17 (Quality: Offline), Value: 0
      > Point Number & (Quality: Offline), Yalue: 0
      > Point Number 19 (Quality: Offline) Value: 0

→ Object(s): 16-Bit Analog Output Status (Obj:40, Var:02) (0x2802), 20 points

      Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices
      > [Number of Items: 20]
      > Point Number 0 (Quality: Offline), Value: 0
        Point Number 1 (Quality: Offline), Value: 0
```